Source Modelling of Massive Black Hole Binaries

Alessandra Buonanno

Department of Physics, University of Maryland

Content:

- Analytical modelling of MBHBs
- Extracting astrophysical information and testing GR
- Do we need more accurate waveforms which include
 - Spin precession
 - Eccentricity
 - Higher-order PN effects in amplitude and phase
 - Merger and ringdown
- Detection, subtraction and parameter estimation

Massive Binary Black Holes (MBHBs)

SMBHB: BH-BH binaries

$$M_{\rm BH} = 10^5 - 10^8 M_{\odot}$$

- IMBH-SMBH binaries

$$M_{\rm IMBH} = 10^2 - 10^4 M_{\odot}$$

- Compact body-IMBH binaries
- IMBHB: IMBH-IMBH binaries

Typical features of waveforms from MBBHs

•Inspiral: circular orbits

Throughout the inspiral $T_{\rm RR}\gg T_{\rm orb}\Rightarrow$ natural $adiabatic~parameter~\frac{\dot{\omega}}{\omega^2}=\mathcal{O}\Big(\frac{v^5}{c^5}\Big)$

For compact bodies $\frac{v^2}{c^2} \sim \frac{GM}{c^2r} \Rightarrow$ PN approximation: slow motion and weak field

Inspiral: precessing orbits

$$T_{\rm RR} \gg T_{\rm prec} \gg T_{\rm orb}$$
; $\omega_{\rm GW} = (\omega_{\rm prec}, 2\omega)$

•Inspiral: eccentric orbits

$$T_{
m RR}\gg T_{
m peri}\gg T_{
m orb}$$
; $\omega_{
m GW}=N\,\omega_{
m orb}$

Chirping: $T_{\rm obs} \gtrsim \omega/\dot{\omega}$

SNR
$$\propto M^{5/6}\,\eta^{1/2}/D_L$$
 $\mathcal{N}_{\mathrm{cycles}}\sim 1/(\eta M^{5/2})$ (from Pretorius 06)

•Last cycles-plunge-merger-ringdown

Numerical relativity; PN resummation techniques (Padé and EOB); close-limit approx.

Extracting science from MBHB observation

- SMBH formation [Haehnelt; Menou et al.; Sesana et al.; Islam et al.]
 - Large SNR; Event rates ~ 0.1 – $10^2(10^3?)$ /year depending on z
 - Accuracy required: a few or tens of percent in estimating masses and distance;
 as highest as possible in estimating the location in the sky
- SMBHs as standard sirens [Schutz; Merkovitz; Finn; Holz & Hughes ...]
 - Accuracy required: as highest as possible in location and distance
- Confirming existence of IMBHBs

SNR ~ 10 ; a few or tens/year

• IMBH+SMBH

Large SNR; a few or tens/year at $z\sim 1$

Tests of GR

PN approximation; non-linear/strong gravity; alternative theories; BH area theorem

— Accuracy required: as highest as possible in estimating all the binary parameters

Detectability of IMBHs

• compact body (1– $10M_{\odot}$) + IMBH event rates $\sim 10^{-6}$ per year [Will 05]

• IMBH-IMBH

[Gurkan et al. 06; Fregeau et al. 06]

Parameter estimation including spin couplings: non-precessing case

Monte Carlo with 10^4 sources distributed over sky positions and orientation

$$M = (10^6 + 10^6) M_{\odot}$$
 at 3 Gpc

[Berti, AB & Will 05]

 $(\overline{\phi}_S, \cos \overline{\theta}_S) \Rightarrow$ binary position with respect to solar-system baricenter

angular resolution:

$$\Delta\Omega_S = 2\pi \left\{ \langle \Delta \bar{\mu}_S^2 \rangle \langle \Delta \bar{\phi}_S^2 \rangle - \langle \Delta \bar{\mu}_S \Delta \bar{\phi}_S \rangle^2 \right\}^{1/2}$$
$$\overline{\mu}_S = \cos \overline{\theta}_S$$

Parameter estimation including spin couplings: precessing case

[Vecchio 04] $(10^6+10^6)M_{\odot}$

spin-orbit coupling

⇒ modulations decorrelate parameters

New study including different masses, spins, etc.

[Lang & Hughes (in preparation)]

Testing Einstein general relativity

[Will 94; Krolik et al. 96; Will 98; Scharre & Will 02; Will & Yunes 04; Berti, AB & Will 05]

- Scalar-tensor theories: phasing modified by GW dipole radiation
- ullet Massive graviton theories: GW-propagation-speed depends on wavelength \Rightarrow distortion in time of arrival with respect to GR

$$\dot{\omega} = \frac{96}{5\mathcal{M}^2} (\mathcal{M}\omega)^{11/3} \left\{ 1 + \frac{5 \, \hat{\alpha}^2 \, \eta^{2/5}}{192 \, \omega_{\rm BD}} (\mathcal{M}\,\omega)^{-2/3} + \frac{96 \, \pi^2 \, \mathcal{M} \, D}{5 \, (1+z) \, \lambda_q^2} (\mathcal{M}\omega)^{2/3} + \text{PN corr.} \right\}$$

Pushing the low-frequency cutoff at smaller frequency

$$D_L=3~{
m Gpc}~~f_{
m cut}=10^{-5}~{
m Hz}$$
 (continuous lines) $f_{
m cut}=10^{-4}~{
m Hz}$ (dashed lines)

[Berti, Buonanno & Will 05]

Effect of systematics: number of cycles (SMBHB)

$$M=(10^6+10^6)M_\odot$$
 at $3~{
m Gpc}$ $f_{
m in}=0.045{
m m}$ Hz; $f_{
m fin}=2.2{
m m}$ Hz (one year observation, SNR ~ 1861) $\chi=|{f S}|/m^2$

	Number of cycles	Number of useful cycles:
Newtonian:	2266	10
1PN:	+134	+4
1.5PN	-92	-6
Spin-orbit:	$+29\chi_1+29\chi_2$	$+2\chi_1+2\chi_2$
2PN	+6	+1
Spin-spin:	$-2\chi_1\chi_2$	$0.4\chi_1\chi_2$
2.5PN	$-9 + 8\chi_1 + 8\chi_2$	$-2 +0.8\chi_1 + 0.8\chi_2$
3PN:	+2	+1
3.5PN:	-1	-0.5 [Blanchet, AB & Faye 06]

Effect of systematics: number of cycles (IMBHB)

$$M=(10^3+10^3)M_{\odot}$$
 at $3~{
m Gpc}$ $f_{
m in}=3.3{
m m}$ Hz; $f_{
m fin}=2~{
m Hz}$ (one year observation) SNR ~ 33

	Number of cycles	Number of <i>useful</i> cycles:
Newtonian:	170236	74618
1PN:	+1828	+730
1.5PN	-554	-193
Spin-orbit:	$+173\chi_1 + 173\chi_2$	$+60\chi_1+60\chi_2$
2PN	+17	+4
2.5PN	$-15 + 12\chi_1 + 12\chi_2$	$-2 +0.8\chi_1 + 0.8\chi_2$
3PN:	+3	+0.1
3.5PN:	-1	-0.02

Statistical errors versus systematic errors

Monte Carlo with $10^4\ {\rm sources}\ {\rm distributed}\ {\rm over}\ {\rm sky}\ {\rm positions}\ {\rm and}\ {\rm orientation}$

$$M = (10^6 + 10^6) M_{\odot}$$
 at 3 Gpc

[Berti, AB & Chen (work in progress)]

At which time are systematic errors smaller then statistical?

 10^{-2}

12 months

A possible study of statistical and systematic errors

Overlap contours at different observation times between different PN families

[Berti, AB & Chen (work in progress)]

Larger and larger systematics when approaching coalescence

[Berti, AB & Chen (work in progress)]

How those results change in presence of spin effects?

Testing post-Newtonian approximation

$$\Psi(f) = 2\pi f t_c - \Phi_c + \sum_{k=0}^{7} \left(\psi_k(m_1, m_2) + \psi_{k l}(m_1, m_2) \ln f \right) f^{(k-5)/3}$$

[Arun, Iyer, Qusailah & Sathyaprakash 06]

• How those results change in presence of spins and in alternative theories of gravity?

Preliminary comparison between quasi-circular analytical waveform and NR waveforms

[AB, Cook & Pretorius (in preparation)]

• NR starts at t=0 with $\omega=0.0416/M$ (e.g., for a $(10^6+10^6)M_{\odot}$, $f_{\rm GW}=1.3$ m Hz) the binary evolves for 2.5 orbits

Preliminary comparison between quasi-circular analytical waveform and NR waveforms (cont.)

[AB, Cook & Pretorius (in preparation)]

• NR starts at t=0 $\omega=0.0416/M$ (e.g., for a $(10^6+10^6)M_{\odot}$, $f_{\rm GW}=1.3$ m Hz) the binary evolves for 2.5 orbits

Merger and Ring down

Observing high-mass BHB at larger and larger distances

[Berti, Cardoso & Will 06]

IMBH-SMBH: what about the eccentricity?

A few events per year [Miller 05; Portegies-Zwart 05, Matsubayashi et al. 05]

 Questionable to use circular-orbit templates for detection?
 At which frequency does it circularize?

ullet Which approximation method to use for $m_2/m_1\sim 10^{-3} \mbox{--}10^{-1}$? Combining the PN approximation with perturbation theory

Berti, Shifflett & Will (work in progress) using waveforms from Moreno-Garrido et al. 94

Higher-order PN corrections to the signal amplitude of MBHBs

Including higher order harmonics

$$h(t) = h_1^{0.5\text{PN}} e^{i\Phi_{\text{GW}}} + h_2^{0\text{PN}} e^{i2\Phi_{\text{GW}}} + h_3^{0.5\text{PN}} e^{i3\Phi_{\text{GW}}} + \cdots$$

- It improves estimation of binary parameters and distance, but angular resolution is almost unaffected
- Make it possible to observe higher-mass MBHB

[Sintes & Vecchio 00; Hellings & Moore 00, 02]

Detection, subtraction and faithfulness

- Detection should not be a problem for SMBHBs (high SNR), unless
 - the masses are $> 10^7 M_{\odot}$, thus they merge in the low-frequency band or we want to alert astronomers of a SMBHB coalescence a few months in advance
 - there are many events at the same time and we need to separate them
- ullet Detection/parameter estimation might deserve more study for IMBH with SNR ~ 10 if we do not know sufficiently well the waveform (e.g., spin precession)
- ullet Param. estim. might deserve more study for IMBH-SMBH with mass ratio 10^{-3} – 10^{-2}
- Which detection strategy? Matched filtering; time-frequency domain; MCMC
- Even if detection is not a problem, in the middle/high-frequency band of LISA we need to disantangle one signal from others with small errors
- Parameter estimation: warning on systematic errors

Concluding

- The detection of MBHBs will open an exciting new era for astronomy
- We need to prepare the *best tools* to be able to extract the *best science* in astrophysics, general relativity or fundamental physics